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I TRO DUCT I ON

This document constitutes the final report of the second phase of

an investigation into convection in the marine atmosphere and into topics

pertaining to radar sensing of the atmosphere. In a short introductory

phase reported in the contract final report (Freeman 19791, we reviewed

relevant theoretical models of marine convection, surveyed the climato-

logical frequency of convection in the North Atlantic, and offered recom- U
mendations on the modelling of triggered convection.

The current investigation has also had a limited scope of study;

the principal objective is to develop a technique for evaluating the

conditions under which boundary layers are unstable and for computing the

rate of growth of unstable motions. In recognition of the limited time

and funds available for this study we restricted our considerations to

simple models of the boundary layer, which can be evaluated without large

computer expense and complication. Nevertheless, it has been possible to

include in this framework all of the physical effects which can contribute

to the perturbed motion of the marine boundary layer. We take into account

the influence on linear stability of wind shear, static stability, Corlolis

force, turbulent diffusion, large-scale convergence, and the geostrophic

wind. A procedure has been developed for solving the linear perturbation

equations to obtain the complex eigenvalues and eigenfunctions correspond-

ing to a given unperturbed state of the boundary layer. The equations are

sufficiently general that realistic profiles of wind speed, density, and

diffusivity can be accomodated. We have provided alternative sources ofJ
* the profiles of mean quantities; they can be prescribed as analytic

functions, or they can be supplied as numerical tables derived either from

data or from a boundary layer model.



In our report to follo., we describe this new computational

technique and the results obtained with it. We also report on related

calculations with the boundary layer computer code SIGMET, some studies

of radar properties of the marine boundary layer, including ducting, and

an investigation of atmospheric internal wave propagation.

The report is divided into four sections. In Section A we consider

the mean structure of the boundary layer as displayed by the SIGMET

computer code; stability of the boundary layer is discussed in Section B,

where formulation, mathematical implementation, and numerical studies are

presented. This section contains the major development of the study. In

Section C, radar properties of the marine atmosphere are reviewed and in

Section D a study of atmospheric internal wave propagation is reported.

We believe it should be possible to associate radar surface ducting and

internal wave activity with other properties of the marine atmosphere.
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A. MEAN STRUCTURE OF THE MARINE BOUNDARY LAYER

One of the capabilities which we require for the analysis of the boundary

layer is a description of the profiles of temperature, humidity, wind field,

and diffusivity. These quantities evolve through diurnal and inertial cycles

in response to external forcing parameters, such as sea surface temperature,

geostrophic wind, large-scale convergence or divergence of the horizontal

wind, and short- and long-wave radiation. They are also influenced by initial

conditions of atmospheric temperature, humidity, and wind field. In response

to these quantities the boundary layer changes with time as determined

by the Navier-Stokes equations and an approximation (based on second-order

closure) to the fields of several second-order variance and covariance

quantities formed from turbulent fluctuations.

The above-described model determines the laminar boundary layer in

terms of the average or unperturbed profiles of the atmosphere. Deviations

from the mean motion have been parameterized in terms of the turbulence

description as they affect the mean motion itself. This model is required

as a starting point for a more detailed model ( see Section B) which describes

the response of the laminar layer to small perturbations. It is also the
starting point for the calculation of derived profile quantities (see Section

C) which characterize the propagation and scattering of microwaves in

the atmospheric boundary layer.

The unperturbed boundary layer is described by the appropriately

averaged Navier-Stokes equations. These are given in Eq. B-2 and in more

detail in an appendix to our proposal to the Naval Research Laboratory

(Freeman, 1978). In the latter report the formulation of the SIGMET

computer code embodying these equations is also described and several examples
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of calculations with the code are presented.

In support of the current investigation we have carried out several

additional calculations of the marine boundary layer with SIGMET. These

calculations have been used as input data for the stability calculations of

Section B and to provide the mean profiles from which the microwave modified

refraction coefficient and structure function were calculated in Section C.

The initial data for the calculation are shown in Fig. A-i, and the profiles

of velocity, humidity and potential temperature at a time (0108 local time)

eighteen hours after the initial time are presented in Fig. A-2 through A-5.

Finally, we have incorporated the terms describing the large-scale

convergence or divergence of the horizontal winds into SIGMET. This term

can be prescribed as an arbitrary function of altitude. From it the vertical

velocity of the air column is calculated, which, in turn, determines the

vertical advection terms. Applications of this version of SIGMET will be

made at a later time.
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B. STABILITY OF BOUNDARY LAYER FLOW

In reviewing literature citations to determine what physical and

mathematical approximations have been investigated, we found several

studies of free convection (without wind shear) and others of shear

instability in a neutrally stable atmosphere. The dependences of

diffusivity and wind on altitude were highly idealized, and the role of

a time-dependent unperturbed state had received little attention.

We have formulated the perturbation problem more generally to take

account of these simplications. The perturbation equations are consistent

with those solved by the computer code SIGMET which evaluates the evolution

of profiles of wind, temperature, humidity, etc., in a turbulent boundary

layer. These perturbations may be unstable; the degree of instability Mi

depends in general on external parameters, such as heat flux and geo-

strophic wind, and on the wavelength and direction of the perturbation.

For each such combination a number of vertical ndes are permissible.

The initial mathematical and numerical formulation was chosen to

facilitate checking with previously obtained results and to permit assess-

ment of the accuracy of the numerical solution. We assume for this

purpose that the unperturbed state is steady and that the parameters

derived from the unperturbed solution are provided on a finite grid of

representative altitudes, as is the case using SIGMET. These points are

not necessarily equally spaced. Since the coefficients are independent of

time, we may assume that the time dependence of the perturbation amplitude

corresponds to a constant phase speed. If the phase speed is real, the

perturbation is a freely traveling wave (for example, an internal wave),

but if there is an imaginary component, the wave is either damped or

amplified. The evaluation of the complex phase speed (or frequency)
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constitutes the basic problem of determining the linear perturbation

solution. In the above formulation the solution is expressible as a

matrix eigenvalue problem containing complex coefficients. The number r
of modes is determined by the number of altitude intervals; the higher

modes of the continuous problem are suppressed by the finite difference

representation. The eigenfunctions corresponding to a given eigenvalue

provide the altitude dependence of the linear perturbation.

In the following sections the formulation of the incompressible,

steady state linear stability problem is described. The calculation takes

into account the effects of wind shear, atmospheric stability, large-scale

pressure gradient and convergence, the Coriolis force and turbulent

diffusion; these are included in the equations given in Section B-l. The

differential equations contain derivatives of order four and lower; in

Secticn B-2 these derivatives are approximated by difference equations of

order four. The SIGMET spatial grid is not uniform in vertical spacing

in order to provide higher resolution near the surface where the wind

shear is large; we account for this nonuniformity by employing a coordinate

transformation described in Section B-3. Boundary conditions and methods

of solution of the complex matrix eigenvalue equations are presented in

Sections B-4 and B-5. The resulting computer code (PERT) has been used to

evaluate the stability of a large number of representative boundary layer

flows. To test the correctness and accuracy of the solutions, comparisons

were made with several reported stability analyses; these are discussed

in Section B-6. A large number of parameters governing stability of

atmospheric flows can be explored with the PERT computer code. In

Section B-7 some of these have been investigated, including the simultaneous

effects of static stability, wind shear, Coriolis force, and large-scale



divergence. We also present calculations based on the unperturbed

boundary flow derived from the SIGMET code. In Section B-8 we surmarize

the status of linear stability analyses.
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B.1 The Equations

The Navier-Stokes equations for ar incompressible stratified fluid

take into account the conservation of mo-entum in a viscous fluid and the

equation for the conservation of mass in the presence of diffusion. These

equations also include the effect of the Coriolis force in addition to

the pressure in the fluid. In a fixed coordinate system x (positive

eastward), y (positive northward), and z (positive vertically upward) the

equations are

au .U +vE + W+-U - fV + f'W + 1 P_ 7 (KTU)

+" U_ + v- + w- + fx + 'r

at ax a az ay
MI+ u11 + V-+ a - P

I + U + + W = ,)
L' + V 7= •K'7 ,

-t 5x y

[i u Bv aw
a + -- + T= 0. B-(l)

Equation B-(l) contains the wind velocity components (U, V, W), the

pressure P, the density p, the Coriolis parameters f = 2sin¢, and

P = 2Qcos-, and the (primarily turbulent) viscosity K and diffusivity K'.

Our approach is to consider solutions to B-(l) which represent

horizontally stratified boundary layer flow (the unperturbed solution)

and to investigate its linear stability against perturbations involving

horizontal inhomogeneity. The equations for the perturbations are

linearized by neglecting all nonlinear terms.

The mean flow equations neglect all horizontal variations except

for an assumed large-scale (synoptic) pressure gradient and convergence

13



.1
or divergence of the horizontal wind speed. These ter-s, which can be

functions of altitude, are assumed to be derivable fro- synoptic weather

data. Including these terms, the mean flow equations are

aU -aU (V-Vg) + f'w = (K ;U),
Z z - z

+ + f (U ) - (K

+ W- f'U + + g _ (K 'W

B + i - (K -a( -
Tt- + W n-£=  z az

- - D. B-(2)

In the third equation for the vertical component of momentum it is

permissible to neglect the terms containing the velocity because over a

flat surface they are very small compared with the acceleration of

gravity g, and the term containing the hydrostatic pressure gradient

)_,F In this (hydrostatic) approximation the vertical momentum equation

becomes

pz Pg. B-(3)

The final equation gives the vertical wind speed by imposing the

surface boundary condition W- 0 and integrating the horizontal divergence3 U +aV
0 '- + 2 , which is a known function of altitude. Other quantities

appearing in B-(2) are the geostrophic wind components

1



(U Vg) : (

assumed to be known functions of altitude. The turbulent viscosity K and

diffusivity K' are determined by appeal to turbulence theory. In 1-D SIGMET,

which solves the above system of equations, a set of auxiliary equations

is solved to determine the turbulent diffusivities. These are obtained by

second order closure hypotheses; a prognostic equation for the turbulent

kinetic energy and algebraic equations for derived turbulent quantities

result. In the following applications we are able to use the 1-D SIG.ET

code to provide data on the mean flow solution, including the turbulent

diffusivities. In doing so, we require a number of quantities (such as

f, D, U9, Vg, surface boundary conditions, etc.) which specify the problem

in terms of local and synotic parameters. Their values determine whether

the unperturbed atmosphere is stable or unstable and the amount of wind

shear and turning in the boundary layer. A more detailed description of

the SIGMET formulation is given by Freeman (1978).

The mean flow solution described above will respond to a perturbation

in accordance with the Navier-Stokes equations (1); the perturbation may

grow, diminish or maintain constant amplitude depending on both the nature

of the mean flow and of the perturbation itself. The perturbation is

assumed to have a small enough amplitude that the governing equations may

be linearized (neglecting terms of higher order than the first in the

perturbation amplitudes). While the perturbation itself is a function of

horizontal position, as well as altitude and time, the coefficients of the

governing equations do not depend on horizontal position. For this reason,

the perturbation may be assumed to be a sinusoidal function of the horizontal

coordinate, x.
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: "o (zkt)ei. '> B-(4)

where k is the vector horizontal wavenumber of the perturbation; a

perturbation of more general horizontal dependence may be constructed by

superposition of these solutions. For the assessment of stability the

wavenumber vector k = (k x, k y) constitutes an additional parameter which

must be sampled.

The time dependence of the solution '0(z,t) determines the stability

of the perturbation. In general, the governing equations form an initial

value problem; starting from a given amplitude, the solution will change

with time in accordance with the perturbation equations themselves. The

time dependence is simplified, however, if the coefficients of the

perturbation equations are independent of time; such is the case when the

solution for the mean flow forms a steady state, as in the case of the

classical Ekman spiral. In general, the mean flow solution is not steady

(due to diurnal oscillations, inertial oscillations, initial state of un-

stable heating, etc.), but it is sufficiently convenient that vie will

make this assumption for the interim. Then we can write.

io (z,k,t) = 00 (z,k)e
iwt B-(5)

and if we wish, the more general solution may be constructed by super-

position.

We now carry out the derivation of the linearized equations govern-

ing the perturbation. By subtraction of B-(2) from B-(l) and using B-(4)

we obtain

16I



Ui k k 2 m Km I

+ i k.U u W uz + w U f(v + _ Vg) + f'w + p k K u + (Km uz)z

ik
- + i kU v + W v + w V+ f(u + U )+ - K rV +K

6t z z H zz

Tw + i kU w- Dw + Ww z + - g + Pz KH w + (K z W z
-t - P~

+ i k.U p + -W p + w _P - k2 K p + (KH p

Btt

i k.-u + wz =0 B-(6)

In the perturbation equation for w the small term involving f' was neg-

lected and the hydrostatic approximation B-(3) was used to eliminate the

vertical component of the mean pressure gradient.

The equations B-(6), together with boundary conditions, constitute

the linear perturbation problem for an incompressible fluid in a very

general form. The coefficients may be quite arbitrary functions of

altitude and time. While we plan to return to this general problem in the

future, for the interim we assume that the coefficients do not depend on

time, so that the solution form B-(5) is applicable. The frequency

constitutes a complex eigenvalue whose value is determined by requiring

the solution for a given wavenumber vector k to satisfy the prescribed

boundary conditions. For each value of k there is a multiplicity of

eigenvalues; they are distinguished from each other by a mode index

corresponding to the number of nodes of the solution in the altitude

range.

Let us now substitute the time dependence of B-(5) into B-(6) and

rearrange the equations for easier solution. The first two equations of

17



B-(6) are combined to form components parallel to k (. = k-u) and

perpendicular to k (n = ky u - kx v)

ik2

M - 2  k z P f'k w(Kv Iz)z" Wz + [i(w- k-U) - K ] - -- -

- f [n + (ky U - k V ) p] 0xgyg x

(KM z -'WTI + [i(w - k.-U) - k2 K] rq - (k U- kx V) w - f'k w

+ f [ij +_k'ug p] = 0 B-(7)
p

These equations are coupled together only by the Coriolis term. The

equation foren does not contain the pressure.

It is now convenient to eliminate the pressure from the w equation

by using the first of B-(7); we also eliminate i by using the last equation

of B-(6). When we do this the order of the resulting equation is raised

to the fourth. Rather than raise the order still higher, we solve

simultaneous equations for n, p and w. The equations are (neglecting f')

U.

t1



-[i<2 M k-.L'

v Z' Z H

+ isz - (kyU - k V). w 0 ,
+ z y kx Z

H z  W Z + [i(.. - k'U) k2 K ] p - T 0,

1 (KM  ) W + k-U k2 ,K Vz +,-]Wz z
v zzzzzz)- K1. + D - - '

P PzO- K( k~ iw - U) k 2 MI + k 2  (KM)
k (K K] + INv z z - H z Hz z

+ [k2 (k2 KH D) + i(-k2(w -kU) + --.Uz + k'U )]w
P

+_f (- ) +- i f[(kyU - kxV g) PZ + k2  P = 0 B-(8)
p P

To summarize, we have derived perturbation equations for a boundary layer

in which the unperturbed state contains an arbitrarily stratified density

and wind shear. Large-scale processes are represented by the geostrophic

wind and the horizontal divergence of the mean wind. We have included

Coriolis terms, but have assumed incompressibility. With these effects

taken into account the equations are considerably more general than have

been studied before. They include as special cases free convection,

internal wave propagation, Ekman spiral instability, etc. If the Coriolis

terms are omitted the n-equation need not be solved sir-ultaneously with

those for w and o. The retention of geostrophic and divergence terms does

not greatly complicate the equations. The diffusion terms increase the

order of the equations; in general, the equivalent order of a single

equation is the eighth, but if the Coriolis term is zero the order is

19



recuced to sixt,. The constant density 'neutral stratification) problem

is of sixth order, and becomes of fourth order when f = 0. Omitting

ciffusion terms, the equations are of fifth order unless W = 0 when they

are of second order. For this last case the equations are readily solved

by iteration of the solution of the second order equations as in ZMOnE

(Milder, 1973). It is thus apparent that the internal wave propagation

problem (which is of second order) can be generalized to include geo-

strophic terms and unstable atmospheric stratification, as well as the

effect of wind shear. Numerical solution of the equations could be

accomplished by several different methods, of which the iterative

integration method used in ZMODE has been alluded to. The method of

time integration has also been mentioned. Each of these methods presents

some difficulties; the iterative method would require generalization to

higher order coupled equations as would the eigenvalue search procedure,

while the time integration method suppresses modes with smaller eigen-

values. In the following sections a matrix solution technique is outlined.

This method has the advantage that all eigenvalues are obtained without

iteration, and accuracy is readily controlled.

20



B.2 Difference Equations

The matrix method of solution of 5-(8) requires that difference

equations on a finite grid of points replace the differential equations.

When this has been accomplished the resulting system of linear coupled

algebraic equations can be expressed as a matrix equation for the vector

consisting of the unknown values of the three quantities r. 2 and w at

each of the altitude positions. Since the frequency , enters into certain

terms of these equations as a linear factor, the complete set of equations

can be cast in the form of a generalized eigenvalue problem. In general,

the elements of the coefficient matrices are complex and the resulting

eigenvalues may be complex. The real part of the eigenvalue measures

the phase speed of the disturbance, while the imaginary part measures its

growth or decay rate. If the atmosphere is divided into I cells or grid

points the values of the unknown eigenvector X (consisting of n, ) and w)

are 31 in number. The difference equations corresponding to B-(8) are of

the form

AY =B , B-(9)

where A and B are square matrices of order 31. The exact form of the co-

efficient matrices depends on the difference equations, on the order of

arrangement of the elements of the eigenvector, and on the boundary

conditions. In order to simplify the matrices (and facilitate partitioning

into IxI submatrices) the order of the eigenvector is chosen to be

X : {fl' r2 nl' " l' 12 " " .'I' W ." W1} .

21



_n this section the difference approxima:ion to the differential expressions

will be developed. We assume, at this time, that the independent variable

X is divided into equal intervals X sucr that Xmax - Xmin = lAX; the

center position of each interval is associated with the values ni' 1i and

w. In the following section we consider the transfornation fro: thc

altitude Z to X, such that the interval in Z is non-uniform, as required

for accuracy in a planetary boundary layer calculation. Referring to

B-(8), we note that the highest order of derivative is tne fourth, which

requires a minimum of five adjacent points for representation. This

implies that at least one of the IxI submatrices will be pentadiagonal

(containing non-zero values on the principal diagonal and two bordering

diagonals above and two below it). We elect to represent lower order

derivatives with a fourth order difference expression as well, since to

do so will presumably increase the accuracy, will invoke a consistent

order of difference approximation, and will not increase the number of

non-zero matrix elements. Boundary conditions will affect the difference

expressions at points immediately adjacent to the top and bottom boundaries

and points one zone removed from them. In the interior of the mesh the

fourth order centered difference approximations to the first four

derivatives are

22



f(l) df fJ- 2  8fi-I + 8fi+l -f i+2
dx 12 Lx

f(2) d2f_ ~ i- + 16f i- 30fi + 16f l fi+2

dx 12Ax2

f(3 ) _ d3f i-2 + 2f - 2f f

dx3  2Ax 3

4 f -4f + 6f. - 4f + f
f(4 ) d4f = f-2 - i- i i+1 i+2 B-(10)

dx4

where the derivatives are evaluated at xi and the subscript on the dependent

function fi denotes the position at which it is evaluated. The above

expressions may be represented more concisely in matrix notation

*f(O)fi-

f(l) f i-1(2 ) C- l

ff(3) 1

f i-l
f(4)/ f ,+ B-(11)

where the coefficient matrix C (5x5) is obtained from B-(10)

1 0 0 0 0 0 0 1 0 0

0 (12x)-1  0 1 -8 0 8 -1

* c-l 0 0 (I2Ax 2 ) " I  0 -1 16 -30 16 -1

0 0 0 (2Ax 3)-  0 -l 2 0 -2 1

'0 0 0 0 Ax-4  1 -4 6 -4 1

23
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.nile it is quite straightforward to derive the expressions given in

S-(0O), it is desirable to forrulate a general method for doing so which

is also applicable at boundary positions. Consequently, the function and

its derivatives are expressed in terms of neighboring values of the

frtion. The Quartic approxiration is

4f(x) = f i + j.1 aj~x-xi0J

in terms of which the derivatives at xi are

flk) = k! ak
ik

We can now find the four unknown coefficients a. by evaluating the function at

x = i + nAx (the four neighboring positions),

4 f(j
f = f. + E L Ax3 n'1  B-(12)

j=l

where n = -2, -1, 0, + 1, + 2. We have replaced ai by the corresponding

cerivative, and now have five equations -or the function and its four

Gerivatives. When written as a matrix equation B-(12) becomes

f i-2f(O)

f i-lf(l)

fi f(2)J (,fij f:C  (3)i

f f(4i+l 

24



Sv-nere

1 -2 4 -8 16 1 0 0 0 0

1 -1 1 -1 1 0 Ax 0 0 0

0= ~ ~ x 2 0 0C=1 0 0 0 0 0 0 AX02

1 1 1 1 10 0 0 6 x3 0

1 2 4 8 16 0 0 0 0 B-(13)

The inverse of C gives the desired coefficient matrix C 1 of B-(11).

It is now easy to write the C matrix by inspection; the C"1 matrix

is obtained by numerical inversion, and subsequent operations are performed

as matrix and vector products, resulting ultimately in the elements of the

* A and B matrices.
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S.3 Coordinate Transformations

The finite difference intervals of the altitude Z are chosen as a

Function of altitude in the SIGMET boundary layer computer code. Since

the mean wind shear is large near the surface, higher resolution near

the surface results in greater computational efficienc,. An analytic

expression has been chosen which contains a linear and a logarithmic term,

such that near the surface the wind velocity obeys the law of the wall.

Our application of this transformation is based on the form chosen for

the SIGMET computer code; it contains, in fact, two transformations. The

first introduces a scaled pressure coordinate, a, the purpose of which is

to simplify boundary conditions in a multidimensional primitive variable

calculation; for the present application this transformation is not

* essential and introduces some complication which would otherwise be

absent. The second transformation generates a non-uniform mesh in the

7 coordinate in order to improve resolution in the surface boundary layer;

* the latter transformation is useful for the perturbation equations as well

as the equation of mean flow. To maintain compatibility with SIGMET we

retain both of these transformations which are described below.

0 The sigma coordinate is defined in terms of the mean pressure

TPT

where 7 = - PT and PB = mean pressure at the surface, and PT = mean

pressure at the top of the computational region. The 7 coordinate has the

• range 0 < c < 1, where zero corresponds to the top of the mesh and unity

to the surface. Using the hydrostatic relation B-(3) we obtain
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'Id B- (14)dz

The transformation to a non-uniform c grid uses a log-linear relation

x :- + : Zn (1-r + 7

1 where a and o are parameters determining the extent and severity of the

non-uniformity. We will require

dx - ( + a B-(15)

The x-coordinate will be divided into uniform intervals "x =
I

* We now wish to express the Z-derivatives (up to order four) which appear

I in B-(8) in terms of x-derivatives; due to the uniform interval on X we

may use the difference expressions, derived in Section B-2, to evaluate

the X-derivatives.

V d _. do dx d -g (I+ a ) d B-(16)
dzdz d1 dx r I-a + a dx

Taking account of the dependence of the coefficient of B-(16) on -, the

higher derivates are obtained by successive application of the above

formulae.

J
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d2  .2 2. 2d 2 .

? + 0[ dx±~o~ (1-7 + ',

I + 2

dz' o.L d x i 0 +7)o'dx

(1-c+ )3 dx'
+ 0)

d4  c-: 4 4 d_ _ d4  2 1 12 d3

;Z4  -0 '+ dx (1-C + '7 ) 0 dx3

8a __ _a 2 d 2  6D. d

+ + a0) (1+0 (1-C; + a0  dx (1-C +1a 04

B-(17)

Clearly, equations B-(16) and B-(17) can be expressed as a matrix, relating

0 the z-derivatives with the x-derivatives, having the form 1

f 1 0 0 0 0 f(O)

fz0 a'l 0 0 0 fl

ii 11f(2)
zz 0 '21  22  0 0 f

f 0 a a 0 f 3zzz a'31  32 c33

fzz/ 0 a 41 0'42  0'3 a44

0 B-(18)

where the coefficients a are obtained in an obvious way from B-(16) and

B-(17), and f(3) _-,- as before. Denoting the matrix of B-(18) by D, the
dx3

f(j) vector can be evaluated from B-(11) to give
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f f--

zz =C -1 f"

fzzz f".l

fzzz f 2B-(19)

Finally, B-(19) can be multiplied by the vector consisting of the co-

efficients of the derivatives of each of the variables n, p, w in the

three equations of B-(8); the results are the vectors giving the elements

on the pentadiagonals of the submatrices. For illustration, consider the

simple example of the terms from the third equation of B-(8) containing

n: if (hz + n). The coefficients of ni are given by the vector result-

from {if P , if, 0, 0, 0} DC 1 . These coefficients are aDP
function of altitude due to the height dependence of z.

The above procedure is used to obtain all of the matrix coefficients

in the interior of the matrix. Boundary conditions, however, must be in-

voked on zones near the boundaries. These affect the coefficients result-

ing from the two zones adjacent to the top boundary and the two adjacent

to the bottom boundary. These are derived in the next section.
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B.4 Boundary Conditions

In Section 2 difference approximations were derived between the

derivatives entering the perturbation equations B-(8) and the values of

the function at mesh points. These relations involve values of the

function two intervals above and below as well as at the cell in question.

Clearly, at cells adjacent to or one cell removed from the boundaries

the difference expression B-(ll) is not suitable because it would require

undefined values of the functions. At these locations, however, the

differential equations also require special treatment in the form of

boundary conditions describing physical conditions of the interaction of

the fluid and the boundary. These boundary conditions are often idealized

and simplified, corresponding in some cases to the necessity of truncating

, Da large region with an artificial boundary (such as the upper boundary

of the planetary boundary layer).

In this section we derive relations analogous to B-(ll) which are

* to replace B-(11) in the boundary cells. This is accomplished by modify-

ing the equations B-(12) which define the coefficients of the quartic

(and which, in turn, are proportional to the first four derivatives). Each

equation corresponding to an evaluation of the quartic outside the region

is replaced by an equation corresponding to a boundary condition. It is

clear from this construction that each boundary cell will require two

independent boundary relations, while cells removed from the boundary will

require a single relation.

The boundaries are assumed to be rigid. At the surface (the lower

boundary) a no-slip condition of zero velocity is invoked, since the fluid

is assumed to be viscous. This condition also applies to the perturbation

velocity, and implies that w w 0. At the upper boundary we
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assume tha: the vertical velocity vanishes, and that thee is no shear

stress or turbulent transfer across it. Applied to the Derturbation

quantities this gives w = W ( We also assu',e for the
zz zz zz

interim that : 0 at z 0 0. This set of boundary conditions is sufficient

for the differential equations (four concitions for the fourth order w

equation, and two conditions for each of the second order - and ; equations).

The difference equations, however, are of fourth order in all quantities;

consequently, some non-physical boundary conditions are required to furnish

the additional constraints on the ; and - equations.

Let us consider the w equations, where we have w wz = 0 at z = 0

and w = wzz= 0 at z = H. At the cells adjacent to z = 0 and z = H both

of the boundary conditions are applied at the positions of the boundary

one-half cell thickness away. In the cells one removed from z = 0 or

z = H only one of the boundary conditions is needed; we choose the

condition w = 0 to be applied at the bottom and wzz = 0 at the top. At

A
the lower boundary cell, for example, the equations derived from the

quartic consist of

4
f 3 = f1 + Z a  Lxj 2J

4
f2 = fI + Z a. AxJ lj

1 l

4

fl = 0 f Z a Lxj  (- /2) '  B-(2

.j4 1 '

J * 0

where the first two equations correspono to evaluating the functions in
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the mesh interior at 2,'x and :x above the center of the boundary cell,

the third equation corresponds to w = 0 at -1/2 Ix. and the fourth

corresponds to wz = 0 at -1/2 -x. Equations B-(20) can be written in the

1 matrix form 8-(13)

(Bottom Boundary)

1 1 1 -1 3/4 -1/2 1 0 0 0 0

1 -1/2 1/4 -1/8 1/16 0 Lx 0 0 0

2C= 1 0 0 0 0 0 0 0 0
2

0 1 1 1 1 1 0 0 0 X 0

1 2 4 8 16 0 0 0 0
24

* B-(21)

The remaining boundary matrices are obtained in a similar way. Suppress-

ing the second matrix factor of C, which is the same for each case, we

I I have

(Next-to-Bottom Boundary)

1 1 3 6.75 -13.5

1 -1 1 -1 1

C= 1 0 0 0 0

1 1 1 1 1

1 4 8 16

B-(22,
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71- -, ;dary)

1 -2 4 -8 16

1 -1 1 -I 1 r
C=  1 0 0 0 0

1 1/2 1/4 1/8 1/16

1 0 2 3 3I

B-(23)

(Next-to-Top Boundary)

0 1 -2 4 -8 16 v
-1 1 -1 1

C: 1 0 0 0 0

1 1 1 1 1

1 0 2 9 27

B-(24)

In the calculations which have been carried out to date we have used these

same matrices for the boundaries of the --and o-submatrices, as well as for

the w-submatrices. It will be desirable to reexamine the - boundary

conditions and to relax the condition of - : 0 at the top boundary. In

order to do so it will be necessary to define separate C-matrices at the

boundaries for n, o and w. It is likely that the boundary conditions at

the top of the mesh will not turn out to be very significant because the

perturbation amplitudes should become small at high altitude. If the

boundary is located high enough the solutions should not be affected by

conditions there.
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Numerical Solution of Matrix Eie'.elue Equat'

We employ a standard subroutine package for solvinq the ccplex

eigenvalue problem. In order to place B-,9) in tie -or-. required by the

solver we multiply by the inverse of the 3 matrix

B IAX 5 B-(25)

The B matrix inverse was obtained quite economically since it has a block

diagonal form

1 0 0

B : 0 B22  0 ,where I is the identity matrix

0 0 1

-li

and the element B22 is purely imaginary. We form B22 and construct

~j1 0-.( 0'
B-l : B 0

10 0 1

The matrix B-A is then submitted to the eigenvalue-eigenvector subroutine.

The computer solution of the complex general eigensystem was per-

formed with routines from the EISPACK (Srith, 1976) mathematics library. These are

FORTRAN-based routines published under the auspices of the Applied

Mathematics Division, Argonne National Laboratory.

H *The eigensystem package includes a driver routine "CG" which calls

a -ecommended sequence of subroutines to find the eiaenvalues and (if re-

ouested) eigenvectors of a complex general matrix.

3
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The sequence of routines called i':

(a) CBAL: balances a complex general matrix.

(b) CORTH: given the balanced comlex general
matrix, reduces it to a sub-matrix
of upper Hessenberg form by unitary r
similarity transformations.

(c) COMQR: (eigenvalues only) or COMQR2 (eicen-
values and eigenvectors): finds the
eigenvalues and eigenvectors of the
complex upper Hessenberg matrix using
the QR algorithm of Francis (1961, 1962).

(d) CBABK2: forms the eigenvectors of the original
complex general matrix by back-
transforming those of the corresponding
balanced matrix.

For convenience in comparing with test results the eigenvalues may

be presented in two alternative formats; as real and imaginary parts of

the eigenvector, or as the magnitude (amplitude) and phase of the eigen-

vector. Since each eigenvector contains an arbitrary complex amplitude,

we have normalized the magnitude to 1 for presentation, and require the

phase to be in the range - ii < ( <. Examples of this presentation are

given in subsequent sections.

Based on comparisons discussed in Section B-6, the computer code

and eigenvalue subroutine are found to give quite accurate estimates of

the lower mode eigenvalues. However, we have found that the 31 x 31 ele-

ment eigenvalue subroutine fails under a limited range of conditions. We

* believe that these conditions correspond to double roots of the indicial

equation, which can arise under certain idealized conditions. This

problem was encountered, for example, when f = oz  0. We have shown that

under these circumstances the indicial e:uation becomes

(A, -wI) (B2 A 2 -T3 0
11 22 22 ( 33 -:
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..here each of the quantities is an I x mtrix. For t:e cited cLse.

= A3 3, and each of I eigenvalues is -eoeated. In t'is instar:e it

is possible to reduce the order of the e-uations, for e :arple by e-mo.ing

the equations forT, which are decoupled Irom the others. The resjltirn

21 x 21 element problem is solved by thE standard technique w-ithcjt

difficulty. When parameters are chosen to correspond to a genera" problem

the difficulty of eigenvalue degeneracy 4s not encountered. Consequertly,

it appears that the failure of the technique will be restricted to a

limited range of parameters where a coefficient (such as f or .-z' is very

I small, but not zero.

We anticipate that difficulty also right occur associated with a

critical level (where w = K.U) but have not examined this point in

0 detail (see Section D). It is expected that the amplitude of the perturb-

ation will increase near the critical level, causing a breakdown of the

equations. However, viscous damping will act to limit the growth; it

I is likely that a careful inclusion of absorption and choice of zoning will

eliminate dff7iculties associated with critical layers.

f
3
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D.6 Test Calculations

The computer code described in "ections B-1--- -5 atove _as Ceer,

programmed and tested against numerical solutions obtained with cther

techniques and by other investigators. These comparisons verify that the

coding is substantially correct and tna: solutions are being obtainec with

reasonable efficiency. Two classes of test problems were evaluated and com-

parisons were made.

In the first, the solutions of the inviscid negative buoyancy stability

problem were obtained. These can be corDareo with eigenvalues calculated

with the ZMODE iterative integration corDuter code, which we have employed

previously. When there is no wind these solutions correspond to internal wave

propagation with real eigenfrequencies. Using an analytic profile of buoyancy

and zero wind speed we calculate the eigenvalues as a function of wave number

using different numbers of zones in the vertical direction. We found that

the eigenvalues were all real, correspording to undamped propagating internal

waves and that they occur in positive-negative pairs, corresponding to propaga-

tion in a given wavenumber direction and in a direction 1800from the first.

In these comparisons uniform zoning was used. For a case in which the buoyancy

frequency profile is given by

N2 = C X 4 exp(-2X), 0 Z -75.,

where Z is the vertical height,

J
X -Z/C: and C1  3.41 X '10 25.0.
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.e nave compared both eigenvalues and eicerfunctions. r 4 1S case served as a

-e'-i -i cation that the matrix ei genval ue sub-routi nes the: .,,e emrploy , af ter somre

initial difficulty, are calculating correct eioenfunct'ons. Using 20 zones

-we obtained the following eigenvalues fo- the case Vk = 2.5cyc/km. (we

ccmpare them with the corresponding values resulting frzrr, the ZMODE computer

code):

r~ode PERT ZMODE

1 .00310 .00311
2 .00 145 .00146
3 .00095 .00095
4 .00070 .00074

We also display the eigenfunctions corresponding to the vertical

velocity perturbation w, as calculated by the two methods. In Fig. B-1

the eigenfunctions for mode 1 are shown; it was necessary to rotate the eigen-

function by an arbitrary phase and normalize it to unit maximum amplitude.

rigs. B-2 and B-3 correspond to the second and third mode numbers. In each

of these cases the phase of the eigenfunction is independent of altitude.

These comparisons indicate that excellent agreement between PERT and NODE

eigenvalues and eigenfunctions is achieved. Agreements for higher modes

oecomes less quantitative as the mode number approaches the number of vertical

zones. It should be feasible, however, to form arbitrarily large mode number

solutions by increasing the number of zones.

The second test problem corresponds to the instability of Ekman

oindary layer flow. An idealized version of this problerr was studied by

illy (1965), who assumed that the atmosohere is neutrally stable and that the

.ilfusivities are independent of altitude. The wind feld is a solution of the
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steady flow equations for a time-and al:itde-independent geostrophic wind,

and corresponds to the classical Ekman s.-al.

: U= V (-eID cos Z/D),

V = Vg e-Z/D sin Z/D,

where V. is the height-independent geostrophic wind, and D : (v/.2)is the

Ekman depth. Lilly calculated stability diagrams for the Orr-Sommerfeld

equation and for a more general problem in which the Coriolis terms are

included in the perturbation equations. Our test consisted in comparing with

a large number of cases reported by Lilly. For the Orr-Sommerfeld problem,

0 parameters close to the point of maximum instability were selected for several

values of the Reynolds number R -s--, where V is the geostrophic wind speed,

is the altitude-independent turbulent diffusivity, and D is the characteristic

Ekman length (see Lilly, 1966 for a comprehensive discussion of this problem).

In constrast to the internal wave problem, the eigenfunctions of the Ekman

problem depend strongly on the direction, as well as the magnitude, of the

wavenumber of the perturbation. We exarined several cases in which the

direction of the wavenumber vector, the Reynolds number, and the zoning were

varied. In agreement with Lilly's results, we found that R = 65 is stable

and that R = 110 and R = 500 are unstable. In both of the latter cases,

instability is due to a single mode of the perturbation; all other modes are

strongly damped. We also compared the real and imaginary parts of the eigen-
I

frequency with Lilly's calculations (by inspection of his small diagrams).

We found general agreement with the grov,.t rate and phase speed of the dis-

' i
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f :urbance in the vicinity of maximum inszab'lity as well as at positions where

.he growth rate is smaller or negative. , few vert;al zones (correspondino

to the initial calculations) the eigenvalues did not compare as well as in the

internal wave calculations. Increasing -he number of uniform size zones

im proved agreement, but substantial differences (,- 25 in worst cases) still

remained with 32 zones in the vertical. Modifing boundary conditions in zones

one removed from the boundary (to relax the boundary constraint) restored

agreement. Since the wind profile contains large shear near the surface, a

nonuniformly zoned mesh was also tested. This produces some improvement, but

we have not had the time to determine optimum mesh parameters or the enhance-

ment of accuracy. Subsequently, the Coriolis terms were added to the matrix

equations and a test of the complete system of equations was made. We calculated

several cases recorded by Lilly corresponding to the wavenumbers where the

inviscid and the parallel instabilities have maximum values. In addition to

the eigenvalues we were able to compare our eigenfunctions with those given

by Lilly. For a Reynolds number of R = 110 the local maximum value of in-

ji.stability due to the parallel mode is located near k = 0.3 and c = -11o.

For these values of the parameters we obtain wR = .124, w, = .0052, which

are in good agreement with Lilly. In order to compare eigenfunctions we formed

the absolute value of the normalized amclitude and the phase of the eigen-

functions. In Fig. B-4 we show these quantities for the %. eigenfunction;

they are in good agreement with Lilly. The inviscid mode has its max-

imum near k= 0.5, E a 80; the correscondinq eiqenvalues are

.0461, = .0021, and the eigenfurctions are shown in Fig B-5. As

indicated by Lilly, the Coriolis terms -Dcify the stability of the bcundary

layer significantly through the paralle" instablity mechanism. The effect



these terms is to lower the critical De ,ncds nu r e,- and to cranae the

craracter of the unstable motion. Conseauently, it is imDortant to include

trese terms in the stability analyses of a neutrally stable bouncary layer

even though at first consideration one would anticipate that the Coriolis

terms are too small to affect the results.

It should be remarked in passing that the above formulation does not N

include all of the terms containing the Coriolis parameter. Referring to (8)

we find that the perturbation equations for - and w have terms proportional

to (Ug, V ) and f which we discuss below.

On the basis of the above comparisons it is now quite likely that the

major terms of the perturbation computer codes are correct, and that the

numerical methods developed for its solution are working satisfactorily.

There remain, however, a large number of terms which have not been tested.

These include terms involving gradients of diffusivity, vertical mean velocity,

and geostrophic terms in the perturbation equations. It will be necessary

to test these terms as well in the course of performing a comprehensive study

of boundary layer instability.

A difficulty arises in trying to explore the many parameters which the

computer code contains. Ultimately these free parameters will be constrained

by the realizability of the mean flow sclution. That is, it is not practical

or realistic to independently vary the many degrees of freedon presented by the

mean flow quantities, since they must be related to each other in such a way

that they represent a consistent solution of the mean boundary layer equations

(as, for example, in SIGMET). This consideration, in fact, constrained our
J formulation, dictating several features of PERT, such as the matrix form and

tne non-uniform zoning. Several calculations have been performed in this mode,
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and they are reported in Section B-7. however, chronologically we first

carried out some calculations designed to show the capabilities of PERT by

obtaining new boundary layer stability results. These findings are also

reported in the next section.

DIp '0
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B-7 Stability of Boundary Layer Flo.

In the previous section tests of the PERT compter code were described

for two classes of problems differing greatly in physical content; wave

propagation in a stably stratified medium, and secondary circulation of an

idealized shear flow in a neutrally stratified atmosphere. These problems

show that the technique gives expected results in these cases, so that we may

now look at several more general boundary layer problems. In this section the

results of calculations sampling some of the additional parameters which affect

boundary layer stability are reported. The combined effects of shear and

stratification appear not to have been investigated. First we explore the

effect of a constant density gradient added to the Ekrran flow problem invest-

igated in Section B-6. The mean wind configuration of the Lilly study is retained,

I the diffusivities are equal and independent of altitude as before, and the

density gradient is taken to be independent of altitude as well. We will

explore how the Orr-Sommerfeld stability diagrams are modified by this constant

* Ddensity gradient; we expect to find increased instability when the atmosphere

is positively buoyant, and stabilization of the shear instability for sufficiently

large stable stratification. The density gradient introduced into the perturba-

* tion equations is a dimensionless quantity scaled by the Ekman layer depth,

D, employed in the neutrally stable case. The figures and discussion below

refer to this scaled quantity o . A typical value of the potential

density gradient in the atmosphere of 10-5 m 1 gives a scaled density

gradient 1 3 x 10- 3.

For the case of the Orr-Sommerfeld equation with R = 110 we have

explored the dependence of the growth rate on the density gradient, :z

Using Kx 
= 0, Ky = 0.5 (near the point cf maximum instability of the neutrally

stratified case), we varied the density gradient as shown in Fig. B-6.
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A very small stable density gradient is sufficient to a:nieve stability

-. 0002); more strongly stable atmospheres exni:It damping for all

modes of the perturbation. It is interesting, however, that the growth rate

does not continue to decrease in the stable region because another mode assumes

the role of the largest imaginary eigenvalue. This moce becomes dominant at

C - .0004, and its magnitude decreases slowly for rore stable stratification.

This mode (and other modes having about the same damping rate) is probably

an internal wave mode, which becomes more prominant as the Brunt-Vaisala

frequency is increased. The dependence of the growth rate on the magnitude

and direction of the wavenumber at P - .0001 for R = 110 is shown in Fig.

B-7. This shows that the configuration of the unstable region is not substantially

changed, but, as expected, the extent of the unstable region is decreased.

The character of the solution also changes rapidly when the density

gradient becomes positive. In Fig. B-6 another mode becomes most unstable when

z .0002. For this mode the growth rate is a rapidly increasing function of

Pz* For typical values of unstable atmospheric stratification the predominant

mode will be this convectively unstable one; the shear instability will not

influence the solution appreciably. It appears from a couple of calculations

that the convective mode is very much less directional than the shear mode.

We have also performed calculations for the Orr-Sommerfeld problem with

R = 500, for which the unstable region in Kx, Ky space is larger. In this

case, as indicated in Fig. B-8, the density gradient must be more negative

(C * - .0015) to overcome the shear instability. As in the lower Reynolds

number case, there is a crossing of mode trajectories. The damping rate for

the most nearly unstable mode in the larger gradient region is now quite small,

corresponding to the larger Brunt-Vaisala 'reauency.

I



In view of the observed effect cl tne Toriclis :r-e on Ve Ekman

stability criterion, we have repeated seve'-al of the ca'culations assessinc

the effects of stratification with the Coricls terms *iIjded. irst, we

examine the effect of the same terms retained by Lilly and included in our

c-iolis test calculations (see Section E-E). The effec: of density gradient

on growth rate for this case is shown in Fig. B-9. As expected from Lilly's

diagrams the instability near z* = 0 is decreased for I = 0.5, ; = 0.

However, for stable stratification the "gravity wave" mode, which soon dominates

the stability diagram, shows very little dependence on the Coriolis parameter.

Consequently for oz* larger than that for mode crossover, the most unstable

mode growth rate approaches that with f = 0. Similarly, for unstable strati-

fication the "convective" modes are not dependent on f so that sufficient in-

* stability also reduces the influence of the Coriolis paramiter. These properties

are displayed in Fig. B-9, by comparison with Fig. B-6 (with f = 0). It is

interesting that the mode responsible for instability at 0 shows markedly

*; smaller growth rate with the Coriolis term present over the full range of density

gradient.

The effect of the large-scale convergence/divergence of the mean flow

field also modifies atmospheric stability. We have explored this effect by

adding the terms in R and D to the neutral Ekman boundary layer perturbation

equations. Starting from the Lilly formulation in which the standard Coriolis

terms are included, we added a height-independent divergence term D (which

may be either positive or negative). The corresponding mean vertical velocity

is linear with height z,

: - Dz.
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Sta.r . .. n: csC t E c, a K 0.5, we n;.e varied 'D tc assess

its e'fect on the growth rate f tse most nstable eioervalue. :n Fic. B-1O

the gro ..tn rate is a function Df the scaled divergence in a range of values

0 actuallY found in the atmosphe,-e. We find that the grc..:th rate is quite

insensi-ive throughout this range cf convergence and divergence. It should

be remarked that the effect of moisture condenation is not taken into account

0 in this investigation; the effect of lifting condensation on convective instability

will be much larger.

Finally, we have performed several calculations using the capability to

I transfer data from the SIGMET code to the PERT code. In this procedure all

of the mean variable profiles needed to initiate the linear perturbation

'4 calculation result from the unperturbed boundary layer calculation. Data are

0 extracted from a particular time of a time-dependent calculation, even though

this is not entirely consistant with the time-independent perturbation for-

mulation. However, the SIGMET solution over a water surface is slowly chancing.

" DThese calculations differ primarily from previous calculations in having

profiles of mean variables which are not simplified for the sake of convenience.

The wind field can change in nagnitude and direction, the buoyancy field may

* contain simultaneously megative and positive regions, and the turbulent transfer

coefficients may vary with altitude as required by the boundary layer equations.

Several mathematical difficulties prevented us from carrying out these

*calculations until very date in the investigation. Consequently, we have not

been able to explore the many parameters governing this boundary layer stability

problem. We are restricted to sampling the stability diagrams for a single case.

* he SIGMET problem has Deen reported in Section A; it corresponds tc cycle

72 (time 1608 local time) of a marine simmer boundary layer having a
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zec-strophic wind speed of 10 r s. Some :f the profie :a-a are snown in Fias.

:-: and A-2. We repeated -he :alculation with lower re-c. :ion sing 20 zones

in order to reduce the computational expense of the ; -alculations. Sub-

t sequently, a survey was made o linear stability as a ,nct~on ol wavenumber.

The dispersion diagram for these calculations is shown in Fig. B-iI. A

number of the modes appear to be internal waves displaced by the geostrophic

wind speed. The up-wind traveling waves are more complicated, displaying

several mode crossings. These later waves will encounter critical levels at

lower altitudes of the boundary layer. Apparently, a snear-unstable mode

* is also present. The magnitude of the growth rate of this mode increases with

wavenumber as shown in Fig. B-12. The similarity of the dispersion diagram

with that from the internal wave study of Section D is quite striking. Further

investigation of this an similar problems is warrented.

.1
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Summary and Remarks

The linear stability of boundary layer flow has been investigated

u,der quite general conditions of wind shear, stratification and turbulent

, excnange. Perturbation equations have been derived admitting arbitrary r
t

dependence of mean flow quantities on altitude, and these are formulated for

numerical solution as a matrix eigenvalue problem. A computer progra.m (PERT)

containing this formulation have been developed to evaluate quite general

* boundary layer stability problems. Calculations have been performed dupli-

cating known results for internal wave propagation and Ekman flow instability.

The stability of generalized Ekman flow in stratified atmospheres has also

been studied. We have determined the amount of negative buoyancy needed to

stabilize the shear instability and have displayed some of the systematic

features of the stability diagram. An advantage of the matrix method is that

all of the lowest modes of the eigenvalue problem are obtained. Using the

resulting data it then becomes possible to trace the competition of several

modes. For the problem of a stratified shear boundary layer we found that

the crossing of different mode trajectories is responsible for the changes

in stability character when stratification departs from neutral in both the

positive and the negative direction. In the case studied we found that only

the mode responsible for instability near neutral stratification is sensitive

to the Coriolis term.

We have also investigated the effect of the large-scale convergence

or divergence of the horizontal wind field on stability. This field is almost

al .ays present due to synoptic weather features such as cyclones and anti-

cyclones. When this term and the resulting mean vertical velocity were
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added tothe neutrally stable Ekman boundary layer we found that the growth

rate of instability was modified, but that within the range of realistic

values of convergence or divergence the magnitude was not appreciably changed.

We conclude that its effect on secondary circulations not involving moist

processes (which have not been included) is minimal.

A version of the PERT computer code has been developed which accepts

data from the one-dimensional boundary layer computer code, SIGMET. To demon-

strate this capability a linear stability analysis of a case involving a

marine atmosphere has been performed. The selected case contains stratifi-

cation which is slightly stable through the mixing layer and quite stable
p

above. Rather small turbulent intensity is present in the lower layer.

Several modes may be identified as corresponding to damped internal waves.

One mode of the eigenvaiue spectrum displays exponential growth; this pre-

sumably corresponds to the shear layer instability (without Coriolis effect,

since this term is currently omitted from the version of PERT used in this

calculation).0
In Section D some additional PERT calculations are presented in

connection with an investigation of the internal wave spectrum to be expected

in a marine atmosphere.

To date, we have been able to indicate qualitatively the range of

capabilities of the linear stability analysis through the illustrative cal-

culations described above. Due to limitations of funds and time we have not

been able to exploit this tool to its full capability. In assessing our

progress toward understanding instability and secondary circulations of

marine atmospheres it is important to place linear analysis in perspective.

4
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The advantages of this approach are quite significant. As we have shc,,n,

k iessentially all physical effects can be taken into account, and -qe resulting

calculations make quite modest demands in terms of comouter time. Witn this

method it is feasible to carry out hundreds of separate calculations, thereby

surveying the stability parameter space more thoroughly than possible ty other

methods. The accuracy of the linear perturbation approach is more diflicult

to evaluate, since it depends on the particular response of the system. To

illustrate, the internal wave solutions are either undamped or slightly

damped by viscosity. They will frequently have small enough amplitude to

satisfy the linear approximation. Under certain conditions, however, they
will grow in amplitude until they can no longer be considered to be of small

amplitude; they then modify the "unperturbed" solution and are no longer

governed accurately by the linear equations. When there exists an unstable

mode we expect that the linear solution ultimately will break down. In that

event the linear equations suggest the conditions for the onset of instability

but give no information on the asymptotic state (if one exists) of the

secondary circulation. Clearly, there is no substitute for a nonlinear

calculation if one requires information about the state that the system

reaches at late time. Information about linear and nonlinear behavior appears

to be complementary in many respects.

Our linear perturbation studies should be augmented with nonlinear

calculations, as proposed earlier. But it will also be desirable to extend

the linear calculations in several respects. We are currently improving the

accuracy of the PERT code by introducing double precision arithmetic in

selected parts of the code. There is also potential improvement for more
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careful boundary conditions and zoning. From the physical point of view
1I

f rther work is needed on time-dependent unperturbed solutions, on compressi-

b'lity, and on moisture effects. Additional work on coupling with the boundary

layer codes will enhance our ability to investigate realistic problems in

convective instability. Finally, as mentioned earlier, we believe that the

a-plications of the PERT code are far from exploited. Considerable informa-

tion can be obtained about the systematics of stability/instability of

marine boundary layers. Not the least of the benefit will come from enhanced

understanding of the dynamics of competing modes.

J



C 
______ZMODE

----o----------- P RT

-30 --------- --- --- -

-5 0 
.... .......

- 3 ----- - - - - -

S-60 ______ 
__

* ~-70_ __ ___

0.0 0! 51.

NORMALIZED EIGENVECTOR
:IGURE B-i. Comparison of Mode 1 eigenfunctiois for PERT and ZMQDE internal

wave calculations, ILi 2.5 cyc/km.

- ~52 . -



-0

-- -----

-_______---------________________________
______________________- -____ ----------- -_ _ _

- -- -----------

-50-----------

I- - ------- - -MD

-20

-30.

NORMALIZED EIGENVECTOR

FIGURE B-2. Comparison of Mode 2 eigenfunctions for PERT and ZMODE internal
wave calculations, Ikl 2.5 cyc/km.

-~~~ 53 i



0~~~~ -------------- -

ZMODE
-10 0 0G @PERT

-20

-50-

-60-_ _

NORMAL IZED EIGENVECTOR

FIGURE B-3. Comparison of Mode 3 ei-genfunctions for PERT and ZMODE internal
wave calculations, Iki 2.5 cyclkm.

54



. . ... . .. .. .. .

p.

............... ..................... ......... ......

4m_ 4. - I 11 : l ; 0

* LA '~ CJ 0

L~~ti4 C-i
403

Z 1H13 0.1V

1 4
4i

Lo >

TT, I f1

ITT Iff
i::1~11T 

-

fa 0

t- T5I3 17!V~

55j



77 1..

.. .... 6.- -t1

-J-

...... . cl 0f:I:

> 0 ;

9~~~- I - - I:

m0

.,. . : ! ........
t~~0 .J ..... 7-

.9.,.,

TT:-.~ TT:1M1 ;ikHi LI
I'll -1 41 C

IlkE~E

'~ ~4T PT

..- ........

.. .. . ...

1Z iHDI3H 031VOS

S5



Wpm

+.003

+.002 /

+.001

-22 4 6 8

Growth Rate (sec-1 x 102)

1, -.001

.002

-.003,

FIGURE B-6. Growth rate of most unstable modes as a function of normalized
density gradient * for the generalized Ekr-an shear instability
problem. R=110.0 , zjk= 0.5 , e=0

p 57



k-0.

+.0022 0.

4.0016

k 0.5

-.0013 +.0040

+.0013 +-0031 +.00k- 0.6

*1O + .0033

50 +.002510
5000 5010

Direction c

FIGURE B-7. Growth rate of most unstable mode as a function of wavenumber
~~ magnitude and direction for the generalized Ekrnan shear in-

stability problem. P=110.0, -r*=-0.0001.

Iz

p. 58



-.01
98

7
6

5

4

3

2

C.

*9 &j.J 00

95

7

>.p_ 6

(I

-. 0001
-.03 -.02 -.01 0 +.01 +.02 +.03

Growth Rate (sec-I)

FIGURE B-8. Growth rate of most unstable modes as a function of norimalized
density gradient p* for the geeaized Ekman shear instability

*problem. R=500.O,Z{k!=0. 5, =20 .

9

59

- - -- - -.. I



+.03

0/

+.002 t

+.003 -

dest grdin c*frtegnrlzdEka ha-ntblt

proble wit Co i tem nlde. R100 Ik'OS C=

.60



SI

.003

.002

.001

Lia

LAJ 0.0
1.0\ 1.5 2.0K -- 1

GROWTH RATE (sec x )

-.001 .'

-.002 ,

-.003 .4

J FIGURE B-10. Growth rate of most unstable modes as a function of scaled
divergence for the Ekman shear instability problem with
coriolis terms included. R=110.0, jkj=O.5, z0.

61



-- ----- - -

-- - -- - -- - - - -

. . . . .- -- - - - - -- . . - - - - - - -

15....

--- - -- - - - -- - - -

10 - ---

_ ___-

.005 .010 .015

WAVENUMBER MAGNITUDE

FIGURE B-11. Phase velocity as a function of wavenumber magnitude for
various modes Sorresponding to SIGMET-calculated atmospheric
parameters 2=0

62



.Ui- - --------- - -- --. --- ----

---- ---- * ------ __ -- - - - -

- ----- ------ - - -__ - -- _ _ _ - -

.010 7__:_

.J __ __ _ _

L4_________

0. .U00 5 2:1 -01 .020_

WAVENUMBER MAGNITUDE

FIGURE B-12. Growth rate of most unstable mode as a function of wavenumber

magnitude corre~ponding to SIGMET-calculated atmospheric

parameters. E=O

63



C. Radar Properties of the Marine trrosphere

An apparent correlation exists between a surface radar duct and

certain convective phenomena. Consequently, it is desirable to try to

bring convective instability of the marine boundary layer into the same

theoretical framework as that of tropospheric ducting. It is also desirable

to estimate the crossection for radar scattering from the marine atmosphere.

Calculations with the SIGMET 1-D boundary layer computer code were described

in the final report of the first phase of this work (Freeman, 1979). At

that time we incorporated a calculation of the radar structure function

based on the variances and covariance of temperature and water vapor

fluctuations into SIGMET. Consequently, we were able to associate profiles

of the radar structure function with various environmental conditions

governing the marine atmosphere. An example of this data is shown in Fig

C-1, taken from the SIGMET calculation described in Section A. The radar

structure function is large at the base of the temperature inversion and

in a zone adjacent to the surface.

The latter region under appropriate circumstances can result in

a surface radar duct through channeling of the beam by the gradient of

# refractivity. A quantity which measures the ability of the atmosphere

to support an over-the-horizon radar duct is the height-modified microwave

index of refraction

Z
M : n-I +

where Z is the altitude, and R is the radius of the earth. This quantity

depends on the index of refraction, n, which is a function of pressure
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p, temperature T, and humidity C:

n-I :.a P(1 + .c)

A negative gradient of the quantity M indicates that ducting will occur.

Consequently, the altitude range through which the gradient is negative

determinrs the depth of the surface duct. In Fig. C-2 we show the profile

of M early in the SIGMET calculation mentioned above. This indicates that a

surface duct is present having a height of -15m, in addition to an elevated

duct at abound 500m. The M-profile later in the calculation (Fig. C-3) at

local time = 0108., shows that the surface duct has essentially dissipated

while the elevated duct has risen in altitude.

Recently, several calculations of the evolution of profiles of

microwave refractive index have been presented by Burk (1980a), who also

employs a I-D boundary layer model. Several different cases are examined,

two of which correspond to marine atmospheres. These cases display surface

duct formation, although greater attention is devoted to elevated ducts.

The characteristics of the surface ducts are not resolved in the figures

presented by Burk and he has not studied the systematics of these ducts.

We have not had an opportunity to survey the dependence of duct

height on atmosphere parameters either. However, it is clear that such

a study is feasible using a tool like SIGMET. In addition to extending

our understanding of conditions under which ducting takes place, it could

be determined to what degree the surface duct is associated with the

susceptability of the atmosphere to trigging of convection.

A somewhat similar study can be made of the radar structure function.

P
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*cain, Burt (120b) has recently given exarr:les of the -Jr:files of the

-4crowave structure function, in addition to those for -he optical range

and for acoustics. Using the same three cases for illustration as in

Burk (1980a), the altitude dependence and relative contributions of temp-

erature and moisture fluctuations were evaluated. Calculations have also

been made recently (Burk, 1980c) examining the effects of a gradient of

sea surface temperature on radar ducting and the structure coefficient.

These calculations indicate that there is a substantial change in these

quantities due to air advection over moderate gradients. Such effects

are expected to be significant in coastal waters. Similar calculations

were performed by Lewellen and Teske (1975).

We can conclude (as in the case of ducting) that theoretical

models of boundary layer structure and associated radar structure function

are available. The models have not been carefully compared with data or

evaluated parametrically. Investigations of the systematics of ducting

and scattering are desirable as part of a program to improve understanding

of the radar properties of the marine atmosphere. In particular, radar

properties can be correlated with weather conditions affecting other local

phenomena such as the formation of convective cells.

Ly t 
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SD. Internal Waves in the Marine Atmosphere

Under suitable environmental conditions the marine atmosphere will

support the propagation of internal waves which may be sensed in a number3r
t of different ways. These waves provide an important mechanism for the

transport of energy and momentum throughout the atmosphere, they disturb

the mean flow in regions where they are generated and where they are dis-

t sipated, and they represent a systematic variability of the atmospheric

state which can influence boundary layer measurements (SethuRaman, et.

al., 1980).

It is of interest to study the properties of internal wave propaaa-

tion as a topic of general interest in the physics of the marine atomsphere

in order to assertain their rode in the processes mentioned above. More

specifically, however, internal waves give rise to atmospheric disturbances

which may be detected by radar; we are interested in examining whether

they could offer an explanation for clear air echoes which propagate with

respect to the ambient wind field. It is considered to be an established

fact that large-amplitude internal waves on breaking produce patches of

clear air turbulence, and it is likely that other detectable events require

large amplitude waves as well.

We are not able to examine nonlinear aspects of internal wave

propagation in this investigation, but the boundary layer linear perturbation

calculation described in previous sections is useful for part of such a

study. We can take into account the profile of stability, the effects of

wind shear, and the damping by boundary layer turbulence and of convectively

unstable regions. Propagation speed, camping -ate, and vertical distribution

o1 the perturbation can be calculated as functions of wavelength, propagation
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direction, and mode number. It appears :hat the internal wa.e propacation

problem has not been examined in this generality previously.

We have performed calculations using the PERT code, demonstrating

its applicability to this class of problem. One particular case of mea-

surements of May 16th, 1979 was chosen 'or study; the lower atmosphere is

near neutral stability (but stable) and is capped by a more stable region.

The wind direction is substantially independent of altitude, and the wind

speed increases with altitude, rapidly increasing near the surface and

changing more gradually in the vicinity of the inversion base. The profiles

of buoyancy frequency and wind speed are shown in Fig. D-1. In this in-

stance, the wind direction was so nearly independent of altitude that the

turning with height has been neglected. The buoyancy frequency shows

maxima at altitudes well above the base of the inversion; the lowest peak

is at - 900m. Qualitatively, for large wavenumber perturbations the dis-

trubance tends to be concentrated in the vicinity of the buoyancy peak

and the phase speed is small. Calculations were carried out for this

problem assuming that the turbulent dissipation is zero. Wave directions

transverse to and aligned with the wind were examined. The former cases

are unaffected by the wind, and form positive/negative pairs of real

eigenvalues corresponding to waves traveling in opposite directions.

When the waves are aligned with the wind the pairs of solutions are split

apart, corresponding roughly to the augrentation of the phase speed for waves

traveling down wind and a reduction of phase speed for waves traveling

against the wind.

In Fig D-2 the phase speed as a function of the magnitude of the

wavenumber of the perturbation is showr for the transverse case. 't is
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important to note that the maximum phase speed is 4r/s, wrich is acnieved

for small wavenumber and the first mode. Tne smallest mode number (cor-

responding to the highest frequency) will give the largest degree of ducting

of the internal wave, resulting in localization of the amplitude around the

peak of the buoyancy frequency. This tendency is illustrated in Fig. D-3

in which the amplitude of the mode 1 solution for k = .015 is shown.

We note that the maximum amplitude is found near the height of the peak of

buoyancy frequency, and that the wave is substantially confined to the region

of large buoyancy frequency. For this case, however, the phase speed is

no larger tham .7m/s, which is considerably smaller than the observed

disturbance speeds. With decreasing wavenumber the phase speed increases

at the same time that the internal wave occupies a wider channel. We find

that the wave is still substantially confined to the region above the base

of the inversion for a wavenumber as small as .004 (wavelength -1500m.),

for which the phase speed is -2m/s. This speed is still rather small, and

it is difficult to raise it appreciably for the case in question. We have

already chosen the fastest (the fundanental) mode and we quote the phase

speed rather than the group speed. Higher speeds in general are achieved

by a larger buoyancy frequency, by longer wavelengths of disturbance,

and by a deeper stable zone of the atmosphere. For longer wavelengths

for our case, however, we tend to spread the internal wave amplitude throuqh-

out the boundary layer thickness, and it would be necessary to invoke a

mechanism (such as shear instability) for creating turbulence near the

inversion base.

In Fig. D-4 the corresponding results for phase speed vs. wavenumber

are shown for the internal waves oriented parallel or anti-parallel with
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: e w.ind. Waves having 'ow mode number propagating '.i:n the wind are

-imarily doppler shifted to a phase speed higher by a:Drcximately 4m/s.

A: higher wavenumbers the effects of the terms containi*ng wind curvature

and slope become significant, resulting in a smaller decrease in phase

sDeed. For waves propagating against the wind direction the dispersion

curve shows larger departures from the zero-wind case. Fig D-4 indicates

that, in addition to a general displacement upwards by - 4m/s of the negative

phase speed modes, there is considerable re-ordering and changing of shape

of the dispersion curves. Some mode crossing cases occur, and, in contrast

to the transverse wave cases, the imaginary part of the frequency is not

zero. Due to the two-peaked structure of D-1, it is qualitatively reasonable

to expect some mode crossing due to resonance between the two propagation

channels. And it is also possible that there may be shear-unstable modes

in this case. However, the anti-parallel modes almost invariably satisfy

conditions for critical level occurrence. It is possible, due to the

coarse zoning in the vertical, that these cases void catastrophic growth

(and absorption), but are nonetheless inaccurate (most of the critical levels

will occur near the surface where the amplitude frequently is otherwise

small). We have not explored this question in sufficient detail to evaluate

the effect of the critical levels on internal waves propagating against

the wind.

In order to evaluate the effect of turbulent dissipation and to take

a step toward treating critical levels more accurately a qualitative

study of the effects of the dissipation terms was made. We may anticipate

the trends resulting from dissipation. For a strongly stable atmosphere

dissipation will be localized near the surface where wind shear produces
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a source of turbulence. Internal waves having appreciable amplituoe at

low altitudes will be damped while waves which are confined to elevated

regions of large stability will be much less affected. Consequently,

waves originating in a distant source will be filtered so that waves of

higher frequency predominate. We also expect that critical layer absorp-

tion will affect the propagation of the high frequency waves traveling

in the upwind direction when the profile of the wind speed results in a

zone of vanishing intrinsic frequency. In this case the waves exhibit fine

structure near the critical level and enhanced dissipation occurs. !,!e have

made one calculation which accounts qualitatively for dissipation by in-

2
troducing a height-independent diffusivity having a magnitude of 2m /s,

corresponding to a stably stratified atmosphere. The dispersion calculations

for aligned internal wave propagation were repeated with this addition.

The real phase speed vs. wavenumber is shown in Fig D-5; comparison with D-4

indicates that dissipation has a significant effect on phase speed. While

the lower modes propagation with the wind are scarcely affected, the

up-wind modes are substantially changed. We also examined the imaginary

parts of the frequency and found that no growing modes are present, and

that significant wave decay takes place. For the down-wind modes the

decay is not large; the first mode, for example, has a 3-hour e-folding

decay time for k = .006 and longer lifetime for longer wavelengths. Higher

modes decay somewhat faster. The up-wind modes, on the other hand, are strongly

damped; the lowest phase speed mode for k = .006 decays in a few minutes,

although some of the higher modes, paradoxically, decay more slowly, Although

we have not explored this behavior systematically, the behavior suggests that

the diffusion terms have the effect of providing the damping required to dis-
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sipate internal wave energv at the critical ievels.

Finally, the dependence on internal wave d'-e:-icn ..as calcu''ted for

the case k = .001 and a diffusivity of K = 2m2/s. .r Fic. --6 the phase

speed of the first two modes are plotted as a functior o0 argle, ranging

from the transverse direction to the dr,,n wind airect ;n. -he phase speeds

each shift by - 4m/s as expected from the doppler shit. The maximum

phase speed of these waves is not much larger than 4mis. The effect of

wave direction is to orient the waves with respect to the wind so that

higher or lower phase speeds are attained. Turbulent dissipation pre-

ferentially damps the higher mode and up-wind traveling waves. The low

mode waves with component of wave number in the down-w"ind d4 rection have

longer lifetimes; the longer wavelengths can survive many hours, but those

of short wavelength have an e-folding decay time of - 1 hour.

The study of internal wave propagation using the linear perturbation

equations provides information on the characteristics of waves favored by

environmental parameters. For the case investigated in our example we

have calculated the dispersion relation and the vertical distribution of the

amplitude of internal waves having a range of horizontal wavenumbers.

The technique could also be applied to other profiles of wirdspeed and

lapse rate to determine the dependence on these parameters. In particular,

the additional damping due to an unstable region of the buoyancy profile

could be evaluated.
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of altitude for May 16, 1979 observed data.
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Summary and Concluding Remarks

The second phase of our "Investigation of Convective Instability

in the Marine Boundary Layer" has been completed. The principal objective

of this study has been to develop a quantitative boundary layer analysis

technique requiring a small development effort and having low computing

demands. Secondary objectives have been to consult with Naval Research

Laboratory personnel on the design and interpretation of marine atmospheric

measurements, and to improve understanding of marine convective phenomena at

sensed by radar.

A special report was submitted outlining considerations of a

theoretical nature in the conduct of marine atmospheric experiments and

two visits to the Naval Research Laboratory were made to discuss current

problems with laboratory personnel. The remaining topics are reported

in this document where they have been organized into the four sections

discussed above.

In Section A the mean structure of the boundary layer as displayed

by the SIGMET computer code is discussed; in Section B, the formulation

and mathematical implementation of a computer code and numerical studies

of the marine boundary layer are presented. This section contains the major

development of the study. In Section C, radar properties of the marine

atmosphere are reviewed and in Section D a study of atmospheric internal

wave propagation is reported.

The tools resulting from this investigation and previous work on

atmospheric boundary layer modeling form a coordinated set having broad

applications. The SIGMET boundary layer computer code takes account of

the processes affecting the evolution of the profiles of density, moisture,
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norizontal wind, and diffusivity in the boundary layer 4n response to

synoptic-scale weather forcing. In addition, quantities related to the

radar sensing of the atmosphere can be derived from these profiles

Finally, with the development of the linear perturbation computer code

(PERT), the profiles can be employed as input data to assess wave propagation

and stability of a given boundary layer. The perturbation code is suf-

ficiently general to unify such previously diverse effects as internal

wave propagation, shear layer instability, convective instability, critical

layer absorption, and other various boundary layer effects leading to

damping or instability.

In our investigation we bare sampled a few of the applications of

these codes. With the boundary layer code the modified radar index of

refraction and the radar structure function were formed. A large number

of perturbation calculations (_ 200) have also been carried out to test

several versions of the PERT code and to investigate some new aspects of

boundary layer stability. We evaluated the effect of density stratification

on the Ekman unstable boundary layer taking into account the role of the

Coriolis term, and we investigated the generalized dispersion relation

of internal waves in a boundary layer containing a shearing wind field and

turbulent dissipation. Finally, we demonstrated how the mean boundary

layer code (SIGMET) and the perturbation code can be coupled together

to perform a boundary layer assessment of greater generality.

Further use and development of the above tools was not possible

within the scope of this investigation, but several interesting problems

can be studied in the future. Particularly valuable is the possibil-,ty

of correlating several different effects through the cc-nbined use of these
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codes. We can determine, for example, the atmospheric conditions under

which radar surface ducting takes place and the associated boundary layer

stability. Another problem of interest is to determine the internal wave

properties of the boundary layer for a range of weather conditions.

Clearly, a linear stability analysis reveals only one aspect of the

secondary circulations of the boundary layer which result from instability.

To understand the state of the atmosphere reached after these instabilities

have grown requires that nonlinear effects be included. Since conventional

methods of nonlinear fluid dynamics are cumbersome and very expensive,

it is desirable to retain the simplicity and generality of the linear

analysis in a nonlinear investigation. Some hope for accomplishing this

goal is held out by expansion methods restricted to a few terms.

84



REFERE CS

Burk, S. D., (1980a) "Refractive Index Profile Evolution: A Numerical Model
Study," Naval Environmental Prediction Research Facility, Monterey, Calif.

Burk, S.C., (1980b) "Refractive Index Structure Coefficients: Time-Dependent
Calculations Using a Numerical Boundary Layer Model," to appear in J.
Appl. Met., May 1980.

Burk, S. D. (1980c) "Boundary Layer Response and Refractive Index Behavior
Near Sea Surface Temperature Gradients," Second Conference on Coastal
Meteorology, Los Angeles, Calif.; January 30 - February 1, 1980, p. 296
of preprints.

Francis, J.G.F., "The QR Transformation," Parts 1 and 2, Comp. Jour. 4,
265-271 (1961) and 332-345 (1962).

Freeman, B., (1978) "Formulation and Application of the Mesoscale Meteor-
ological Simulation Model, SIGMET." Appendix of Physical Dynamics, Inc.,
La Jolla, Calif., Proposal PD-LJ-78-165P, submitted to the Naval Research
Laboratory, Washington, D.C.

Freeman, B., (1979) "Investigation of Convective Instability in the Marine
Layer (U)," Physical Dynamics, Inc., La Jolla, Calif., Report PD-LJ-79-196,
Naval Research Laboratory Contract No. N00173-78-N-FI33 (Secret).

Hitney, (1978) "Surface Duct Effects," Naval Ocean Systems Center, San Diego,
Calif., Report No. TD144.

Lewellen, W. S., and M. E. Teske, (1975) "Development of a Low-Level Atmospheric
Turbulence Model for Marine Environments," Aeronautical Research Associates
of Princeton, Inc., Report 255.

Lilly, D. K., (1966) "On the Instability of Ekman Boundary Flow," J. Atmos. Sci.
23, 481-494.

Milder, M., (1973) "User's Manual for the Computer Program ZMODE," R&D Associates,
Santa Monica, Calif., Report RDA-TR-2701-O01.

SethuRaman, S., C. Nagle, and G. Raynor, (1980) "Climatology of Internal
Gravity Waves in the Marine Surface Layer in a Coastal Environment,"
Second Conference on Coastal Meteorology, Los Angeles, Calif.,
January 30 - February 1, 1980, p.244 of preprints.

Smith, B. T., et al., (1976) "Matrix Eigensystem Routines: EISPACK Guide,"
Second Edition, New York, Springer-Verlag.

J

85




